ToF Resolution

Jónatan Piedra, Iván Vila, Marcin Wolter 5/16/03

Outline

- Selection of pure Pion sample from D* decays.
- Official ToF reconstruction:
 - TZero set NegLog
 - Pulses set Simple
 - Pulses useTOFDCuts set true
 - Pulses_minAdcCut set 0
 - Pulses_minTdcCut set 0
 - Extrapolator set Geometric
 - Associator set TLR
- T₀ effect on resolution in data and MC (Monte Carlo see our note #6109, Opposite Side Kaon Tagging. A Monte Carlo Study for Run II", J.Piedra, A. Ruiz, I. Vila, M. Wolter and Ch. Paus).
- Are the resolution tails due to T_0 ?

Soft Pions from D*->Pi(D0 -> K Pi)

0.14 0.15 0.16 0.17

/ID2

10000

6000 4000

2000

- One D⁰ candidate
- D⁰ mass peak (cuts: 1.845<M<1.875
 - Mass difference between D⁰ and D* less than 0.145
- Pure Pion sample (~97%-98%)

ToF resolution

ToF pull distribution

Background ToF resolution

resolution – background subtracted

ToF resolution – background subtracted (in Pion Pt bins)

0.5

-1

-0.5

about 30% in the wider gausian

Monte Carlo simulation

- Full GEANT MC, about 14 000 events (same files as used by Jonatan) generated April 2002 "simple" ToF model.
- MC generated with two different types of tracks: MITMC and PROD tracks need different treatment.

Technicalities TofModule (tcl):

- CDF release 4.8.4
- Data object:

TOFD, TofPulsesColl, TofMatchColl, TofMatch.

Reconstruction run again:

TOFD->TofPulsesColl -> TofMatchesColl

module enable TofModule module talk TofModule ReconMenu Pulses set Simple Pulses useTOFDCuts set true Pulses minAdcCut set 0 Pulses minTdcCut set 0 Extrapolator set Geometric Geometric overrideProcName set true Geometric procName set MITMC Associator set TLR TZero set NegLog exit CalibratorType set Dummy exit

Simulated ToF

Kaons

$$\sigma_1 = 112 \text{ ps}$$

 $\sigma_2 = 301 \text{ ps}$

Pions

$$\sigma_1$$
=123 ps σ_2 =323 ps (~25% of track

Simulated ToF - true ToF Gaussian + tails

Fit – two gausians

Replacing calculated T₀ by the true one

Pions, σ =108 ps

- Tails in the ToF resolution are due to the poor estimation of T_0 .
- Cuting on T₀ error doesn't improve the resolution.

T₀ effect

 $(ToF_{meas}-ToF_{Pi})$ for Pions from D^* and D^0

Correlation – T₀ effect (also non-correlated tails – non Pion admixture?)

symmetric.

Significantly lower efficiency, 18% instead of 63%.

15

ToF resolution – few remarks

- Expected ToF resolution for T_0 calculation using another Pion: 118ps*sqr(2)=166 ps. We obtained 150 ps reasonable agreement.
- After correcting for t0 there is still a 11% of cases with lower resolution, then for the time differences we expect this number to be twice as big, it is 22% assuming that the low resolution cases are independent (very good agreement with the 23%)

Conclusions

- We have a source of pure Pions to study ToF.
- Tails in the resolution due to errors in T_0 .
- Having tagged track (Pi, K) we can improve ToF resolution, but efficiency can decrease.

		MC-Pions	Data-Pions
ormal	Sigma ₁	123 ps	129 ps
	Sigma ₂	323 ps	380 ps
	Wide gausian	25%	30%
o T ₀ effect	Sigma	108 ps	118 ps
	Wide gausian		11% 17

sigma(T₀) distribution

